Search results for "Molecular rotors"

showing 2 items of 2 documents

Direct investigation of viscosity of an atypical inner membrane of Bacillus spores: A molecular rotor/FLIM study

2013

Abstract We utilize the fluorescent molecular rotor Bodipy-C12 to investigate the viscoelastic properties of hydrophobic layers of bacterial spores Bacillus subtilis. The molecular rotor shows a marked increase in fluorescence lifetime, from 0.3 to 4 ns, upon viscosity increase from 1 to 1500 cP and can be incorporated into the hydrophobic layers within the spores from dormant state through to germination. We use fluorescence lifetime imaging microscopy to visualize the viscosity inside different compartments of the bacterial spore in order to investigate the inner membrane and relate its compaction to the extreme resistance observed during exposure of spores to toxic chemicals. We demonstr…

BiophysicsAnalytical chemistryBacillus subtilis010402 general chemistry01 natural sciencesBiochemistryEndosporeMicroviscosity03 medical and health sciencesViscosityLipid bilayer030304 developmental biologySpores Bacterial0303 health sciencesFluorescence Lifetime Imaging (FLIM)biologyViscosityfungiCell BiologyLipid membranesbiology.organism_classification0104 chemical sciencesSporeMicroviscosityMembraneMicroscopy FluorescenceMolecular rotorsBiophysicsBacterial sporeBacillus subtilis sporesBacillus subtilisBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Molecular Confinement in Femtoliter scale aqueous Compartments

2017

Molecular confinement is known to lead to acceleration of molecular dynamics along with surface interaction. Nature employs confinement in molecularly crowded, heterogeneous and, specialized femtoliter (fL) compartments inside living cells for spontaneously achieving higher reaction efficiency and spatial-programming of composite, multi-step biochemical processes. We here show the facile production of aqueous fL droplets for studying molecular confinement on a biochip. We prepare fL aqueous droplets in oil drops on solid substrates by a “field-free”- no external electric fields and electrolytes - piezoelectric inkjet printing in which a novel actuating waveform is employed by picoliter size…

inkjet printing molecular confinement molecular rotors molecular machines
researchProduct